On Partial Sufficient Dimension Reduction with Applications to Partially Linear Multi-index Models

نویسندگان

  • Zhenghui Feng
  • Xuerong Meggie Wen
  • Zhou Yu
  • Lixing Zhu
  • Zhenghui FENG
  • Xuerong MEGGIE WEN
  • Zhou YU
  • Lixing ZHU
چکیده

Partial dimension reduction is a general method to seek informative convex combinations of predictors of primary interest, which includes dimension reduction as its special case when the predictors in the remaining part are constants. In this paper, we propose a novel method to conduct partial dimension reduction estimation for predictors of primary interest without assuming that the remaining predictors are categorical. To this end, we first take the dichotomization step such that any existing approach for partial dimension reduction estimation can be employed. Then we take the expectation step to integrate over all the dichotomic predictors to identify the partial central subspace. As an example, we use the partially linear multi-index model to illustrate its applications for semiparametric modelling. Simulations and real data examples are given to illustrate our methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Ridge Estimator for the Partially Linear Model under Right-Censored Data

Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...

متن کامل

Local likelihood regression in generalized linear single-index models with applications to microarray data

Searching for an effective dimension reduction space is an important problem in regression, especially for high dimensional data such as microarray data. A major characteristic of microarray data consists in the small number of observations n and a very large number of genes p. This “large p, small n” paradigm makes the discriminant analysis for classification difficult. In order to offset this...

متن کامل

Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function

This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension red...

متن کامل

A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria

Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...

متن کامل

An adaptive-to-model test for partially parametric single-index models

Residual marked empirical process-based tests are commonly used in regression models. However, they suffer from data sparseness in high-dimensional space when there are many covariates. This paper has three purposes. First, for partially parametric single-index models, we suggest a partial dimension reduction adaptive-to-model testing procedure to extend an existing directional test into an omn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012